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Abstract
The recent outbreak of the Zika virus (ZIKV) and the discov-
ery that perinatal Zika exposure can lead to the Congenital 
Zika Syndrome has promoted a call for prevention mea-
sures. Due to the increased number of babies born with mi-
crocephaly, structural brain abnormalities, and neurological 
alterations in regions affected by ZIKV, investigations were 
carried out in order to better understand this process. The 
maternal immune system directly influences the fetal cen-
tral nervous system, and complications during pregnancy 
have been associated with neurodevelopmental disorders. 
Autism spectrum disorder (ASD), a neurodevelopmental 
disorder commonly manifested in the first years of life, is a 
disease with multifactorial etiology and is manifested typi-

cally by social and communication impairments, as well as 
stereotyped behaviors. Brain abnormalities, including both 
anatomically and functionally, can be observed in this dis-
order, suggesting delays in neuronal maturation and al-
tered brain connectivity. It is known that some viral congen-
ital infections, such as rubella, and cytomegalovirus can in-
terfere with brain development, being associated with brain 
calcification, microcephaly, and ASD. Here, we reviewed a 
range of studies evaluating the aspects concerning brain 
development, immunological status during pregnancy, and 
neuroimmunomodulation in congenital viral infections, 
and we discuss if the fetal brain infection caused by ZIKV 
could predispose to ASD. Finally, we suggest a mechanism 
encompassing neurological and immunological pathways 
that could play a role in the development of ASD in infants 
after ZIKV infection in pregnancy. © 2019 S. Karger AG, Basel

P.V. and J.A.G. contributed equally to this article.
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Congenital Zika Syndrome

In early 2015, a Zika virus (ZIKV) outbreak was iden-
tified in the northeastern region of Brazil [1], followed by 
reports of an increased number of children born with se-
vere microcephaly in Brazil in the same geographic area 
[2]. In 2016, after assessing several cases and reviewing 
criteria of teratogenesis, ZIKV was confirmed as a new 
teratogen in humans and responsible for the increase in 
the number of microcephaly cases in Brazil [3–5]. ZIKV 
teratogenesis affects mainly the central nervous system 
(CNS), presenting marked microcephaly with significant 
craniofacial disproportion, cortical malformations, and 
intracranial calcifications among other symptoms [4, 6, 
7]. Nonetheless, a proportion of babies born with a head 
circumference within the normal range (> 33 cm for term 
boys and girls) may present cerebral and neurological ab-
normalities [8]. Several studies have focused on the iden-
tification of the mechanisms and pathways involved in 
ZIKV infection outcomes during pregnancy. In this work, 
we reviewed the embryologic and immunologic aspects 
during CNS development and ZIKV embryopathy. Final-
ly, we suggest a mechanism encompassing neurological 
and immunological pathways that could play a role in the 
development of autism spectrum disorder (ASD) in in-
fants after ZIKV infection in pregnancy.

Normal Neurodevelopment

The development of the CNS begins from the third 
week of gestation with the formation of the neural plate, 
which is a thickening of the embryonic ectoderm along 
the rostral-caudal midline. Differentiation of all embry-
onic stem cell lines involves complex cascades of molecu-
lar signaling. The interaction between expression of some 
genes and exposure to certain environmental factors con-
tributes to this process [9].

The neural tube develops in the fourth week in the em-
bryo’s life. Initially, this structure contains only a single 
cell layer that surrounds a central canal. Neural progeni-
tor cells are initially located adjacent to the central canal 
(i.e., future ventricular system) in the ventricular zone 
(VZ) [10]. Production of neurons involves the increase of 
the neural progenitor cell population [11]. In the develop-
ing brain, the division of this population of cells is asym-
metric, leading to the formation of 2 different types of 
cells: neural progenitor cells and neurons. Progenitor 
cells stay in the proliferative zone, whilst neurons migrate 
radially from this area (most being produced in the VZ) 

to the center of the brain out to the developing neocortex 
[10].

As development proceeds, the brain becomes larger 
and the distance between the VZ and the most external 
layer increases. Hence, the mode of neuronal migration 
changes and the neurons use the radial glial guides to sup-
port their migration [12]. Radial glial guides extend a bas-
al process that attaches to the pial surface of the brain, and 
the neurons use such processes as scaffolding to their mi-
gration [13]. The result of this orderly fashioned migra-
tion is that the neocortex has a structure of 6 well-defined 
layers. Initially, the brain is a smooth “lissencephalic” 
structure. Gradually, the increase in neuronal production 
and migration leads to an increase in its mass and area, 
and the brain develops the characteristic mature pattern 
of gyral and sulcal folding. 

ZIKV Infection during Pregnancy and Its Effects 

Infections during pregnancy can alter the embryo/fetal 
environment through maternal fever, dehydration, stress, 
nutritional impairment, and other related symptoms. It is 
known that a fraction of placental damage is caused by 
infections, and approximately half of all preterm births 
are associated with histological evidence of placental in-
flammation [14].

An increased number of babies born with microceph-
aly and neurological alterations in regions affected by 
ZIKV [15], as well as the emergence of the hypothesis in-
volving a teratogenic effect of the virus infection [4], trig-
gered several investigations in order to test the associa-
tion between these 2 outcomes. Evidence linking ZIKV 
infection and brain abnormalities was observed through 
the detection of the virus in children exposed during 
pregnancy, including presence of viral RNA and antigens 
in the brain tissues and in placental tissues of early mis-
carriages [16, 17]. Studies in mice infected with ZIKV 
found damage in the fetal CNS cells with maternal-fetal 
transmission through the placenta and tropism of the vi-
rus to cells in the cerebral cortex, including neural pro-
genitor cells [18, 19].

It is known that cortical, ocular, and migratory disor-
ders are some of the main characteristics observed, the 
occurrence of these and other malformations being de-
pendent on the gestational period in which the mother 
was infected by ZIKV [7, 20]. There is a peculiar pheno-
type in affected babies, characterized by severe micro-
cephaly with significant craniofacial disproportion, over-
lapping sutures, prominent occipital bone, destruction of 
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the cerebral cortex, ventriculomegaly, cerebellar hypo-
plasia, intracranial calcifications, ophthalmic anomalies, 
and disorders of neuronal migration, such as lissenceph-
aly and pachygyria. Severe neurological abnormalities 
and arthrogryposis are consequences of the prenatal cor-
tical destruction [6, 7]. These anomalies are the result of 
a sequence of events already described as the “Fetal Brain 
Disruption Sequence” [21], where the sudden destruction 
of the brain is followed by skull collapse. The term Con-
genital Zika Syndrome was coined [7, 22].

However, this phenotype is now considered only “the 
tip of the iceberg” and there is a spectrum of less severe 
abnormalities after congenital Zika infection. There is a 
significant number of children born with a head circum-
ference within the normal range presenting a range of 
abnormalities, including postnatal microcephaly, brain 
calcifications, ophthalmic abnormalities, seizures, and 
other neurological dysfunctions. At the present moment, 
it is too early to assess cognitive abilities in these children 
[6, 23, 24]. Adams et al. [25], in a study in macaques, have 
demonstrated that even in the absence of microcephaly, 
the teratogenic action of ZIKV infection in the fetal brain 
is substantial and has long-lasting effects. These effects on 
the fetal brain include loss of fetal noncortical brain vol-
ume, injury to the ependymal epithelium, and loss of late 
fetal neuronal progenitor cells. Another study with ma-
caques also described the long-lasting effects of ZIKV in-
fection on behavior, brain structure and functions [26].

Pregnancy and the Immune System

Successful pregnancy depends on a constant balance 
between maternal and fetal modulators, playing roles in 
uterine quiescence, membrane integrity, and cervical 
competence [27]. The fetus is in intimate contact with the 
maternal immune system, being exposed to a range of 
substances ingested from the amniotic fluid, such as food 
antigens, microbes, and even maternal cell antigens [28–
31]. Since the fetus represents a semi-allogeneic graft to 
the maternal organism, it expresses paternal inherited an-
tigens that make it a potential target for maternal immu-
nity. The idea of maternal-fetal tolerance was first recog-
nized and discussed by Medawar [32] in 1953. In this 
sense, regulatory and suppressive immunological mecha-
nisms are usually put into action in an attempt to avoid 
rejection of the fetus. As an example of immune modula-
tion during pregnancy, the maternal inflammatory cyto-
kine profile Th1/Th2/Th17 is altered, allowing the correct 
fetal development and survival [33].

The initial phase of pregnancy (first trimester) is 
marked by an inflammatory immune profile favoring 
embryo implantation and angiogenesis [33, 34]. After 
this, the inflammatory maternal immune response should 
be continuously suppressed. For this, regulatory cyto-
kines (e.g., IL-10) induce the expression of suppressive 
molecules in the trophoblast [35]. In addition, the Th17 
and Treg cells regulate the immune system during preg-
nancy [36]. However, the process of immunomodulation 
during pregnancy may facilitate opportunistic infections 
that take advantage of this field.

The fetal immune system presents a strong innate im-
mune response with antimicrobial properties able to in-
hibit bacterial colonization of the placenta [37]. More-
over, in the first trimester of pregnancy, the human fetus 
presents an immune response with the presence of CD4+ 
and CD8+ T cells produced by the fetal thymus [38, 39]. 
An abundant and functional pool of FOXP3+ T-regula-
tory cells is also found in fetal lymphoid tissues [40]. Fig-
ure 1 represents a timeline of key events in the neurode-
velopment of the fetus as well as the maternal immune 
system.

Prenatal Adversities, Viral Infections, and ASD

Immune adversities during pregnancy are often asso-
ciated with fetal growth restriction and compensations in 
other organs in an attempt to protect the fetal brain de-
velopment [41–43]. Complications during pregnancy can 
decrease the fetal blood supply, resulting in the shunt of 
blood from the peripheral organs to the CNS. The pres-
ence of maternal inflammation and infection was associ-
ated with alterations in brain development and behavior 
disorders in the fetus [44, 45]. Proinflammatory cyto-
kines damage oligodendrocytes during critical periods of 
brain development, which can result in perinatal inflam-
mation and can contribute to the pathogenesis of brain 
lesions [46]. In relation to infections, it is known that 
some pathogens, such as STORCH (an acronym for syph-
ilis, Toxoplasma gondii, rubella, cytomegalovirus, and 
herpes viruses), can alter brain development and are as-
sociated with alterations, such as brain calcifications, mi-
crocephaly, and neurodevelopmental disorders [47–49].

Altogether, evidence suggests that these complications 
during pregnancy are associated with neurodevelopmen-
tal disorders such as ASD [50]. ASD is commonly mani-
fested in the first years of life and involves social and com-
munication impairments, as well as stereotyped behav-
iors. Brain abnormalities, both anatomic and functional, 
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are present in this disorder, suggesting delays in neuronal 
maturation and altered brain connectivity [51]. The 
mainly anatomical characteristics observed in ASD pa-
tients include dysplasias in the hippocampus, cerebellum, 
and neocortex; gray and white matter disorganization 
[52]; reduced volume of the corpus callosum regions and 
hippocampus [53], and abnormal patterns of cortical 
thickness [51, 54].

There is a range of genetic and environmental factors 
contributing to the susceptibility of the majority of ASD 
cases. Studies have indicated a tight relationship between 
the nervous and immune systems, acting as a neuro-im-
mune network and influencing many mental disorders. 
The CNS can regulate the immune system through neu-
ronal and hormonal pathways, and the immune system 
can influence the nervous system via cytokine produc-
tion. In this sense, cytokines and chemokines can modu-
late brain function as well as influence the neurogenesis 
process, acting in response to infections, injuries, and in-
flammation.

Neuroinflammatory Responses and ASD

During an initial immune response, the recognition of 
pathogenic antigens triggers inflammatory processes, re-
leasing proinflammatory cytokines such as TNF-α and 
IL-6 [46]. For instance, TNF-α may regulate the dopami-
nergic differentiation as well as the apoptosis of neurons, 
leading to impaired fetal brain function [55]. Experimen-
tal studies demonstrated that CNS inflammation, due to 
cytokine production by the mother and/or child, may 
modify the activity of brain regions, such as the hippo-
campus [56].

Inflammatory response in the CNS mediated by mi-
croglial cells plays a role in neuronal damage and removes 
damaged cells by phagocytosis. In ASD, the number of 
activated microglial cells seems to be increased [57]. Al-
terations in synaptic and dendritic organization and neu-
rotransmission were also observed [50]. Considering pre-
vious evidence linking autism to maternal infections and 
inflammatory profile, we suggest a robust association be-
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Fig. 1. Normal neurodevelopment. Each gestational week is marked by different events of neuromaturation and 
immunological responses in order to ensure the correct development of the brain of the fetus. The maternal im-
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tween the immune system and ASD. In this sense, some 
studies have demonstrated increased cytokine levels in 
children with ASD [58–60]. IL-6 has been involved in sev-
eral psychiatric disorders beyond autism. High levels of 
IL-6 were observed in the anterior cingulated gyrus, in the 
frontal cortices and cerebellum of ASD patients and could 
mediate autistic-like behaviors [61–63]. A mouse model 
of autism is associated with increased production of IL-6, 
and the inhibition of exacerbated IL-6 production im-
proves the sociability behavior in those mice [64]. An-
other mouse model of autism covers a situation of mater-
nal infection and is marked by immune dysregulation 
and autistic-like symptoms in the offspring [65]. The ad-
ministration of an anti-IL-6 antibody prevents these be-
havioral changes [66].

Other cytokines are also associated with autism and/or 
autistic-like behaviors. Postmortem sampling of the brain 
also identified increased levels of TNF-α in patients with 
ASD [60]. Additionally, proinflammatory cytokines have 
been associated with deficits in the ASD core symptoms 
[58, 67]. Previous studies observed alterations in the ex-
pression of toll-like receptors (TLRs), NF-κB, IL-27, IL-
17A, IL-10, and Foxp3 in BTBR mice – an experimental 
model for autism. These animals present repetitive be-
haviors and social deficits similar to those observed in 
children with ASD. After treatment with an adenosine 
A2A receptor agonist (a potential drug for immune, in-
flammatory, and neurodegenerative diseases), attenuated 

changes in behavior and expression of proinflammatory 
mediators were observed [68, 69]. Also, another study re-
ported lower levels of IL-2, IL-6, IL-9, interferon (IFN)-γ, 
and TNF-α, as well as higher levels TGF-β, in BTBR mice 
following adenosine A2A receptor stimulation [70].

Neuroimmunomodulation of ASD and ZIKV

The inflammatory and immunological responses 
against ZIKV infection in pregnant women are of great 
interest since it is known that the presence of the virus in 
the CNS cells triggers the destruction of all adjacent tis-
sue, causing cell death. It is not well understood how the 
immune system response to ZIKV infection is regulated. 
However, it is recognized that the inflammatory process 
triggered in an attempt to control the infection acts in 
both a beneficial and harmful way to the infective organ-
ism. Here, we discuss whether the inflammatory response 
to ZIKV infection and the brain damage caused by the 
virus in affected babies could favor the development of 
neurodevelopmental disorders such as ASD (Fig. 2). To 
support our theory, some points must be considered: (a) 
it is important to know the effects of the neuroimmuno-
regulation after virus infection; (b) we wonder whether 
the process of death of CNS cells infected by ZIKV and, 
consequently, tissue damage occurs due to the release of 
inflammatory mediators or (c) through direct lysis of the 
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Fig. 2. Model of neuroimmunomodulation 
of ZIKV infection and ASD: (a) during the 
initial immune response against ZIKV in-
fection, an inflammatory response is trig-
gered with the release of proinflammatory 
cytokines, such as IL-6 and TNF-α; (b) the 
exacerbated inflammatory response against 
the virus may compromise viral elimina-
tion; (c) among the malformations ob-
served in the affected babies (e.g., ocular), 
some have already been associated with an 
exacerbated inflammatory process; (d) we 
hypothesized whether the ZIKV infection 
process may generate long-term neuro-
pathological effects in the infected mother’s 
children, including the onset of neurode-
velopmental disorders, such as ASD, since 
an exacerbated inflammatory process and 
the cytokines IL-6 and TNF-α (released in 
response to ZIKV) have already been asso-
ciated with ASD. ZIKV, Zika virus; ASD, 
autism spectrum disorder; IL-6, interleu-
kin-6; TNF-α, tumor necrosis factor alpha.
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infected cells during the immune response against the vi-
rus. In this way, the tissue destruction would occur 
through the immune system’s own cells lysing the infect-
ed target cells. It is well known that IL-6 is a key cytokine 
involved in autism [61]. Considering the facts above, little 
is known about the neuropathogenesis of ZIKV. ZIKV is 
able to reach the fetal neural cells when it crosses the fetal 
barrier through infection of cytotrophoblasts or transmi-
gration of infected primary human placental macro-
phages. After virus infection, the human placental mac-
rophages try to eliminate the virus by secreting type I 
IFNs; however, the cells remain permissive to viral repli-
cation.

Hamel et al. [71] have identified the TLR3 as the initial 
immune receptor involved in the sensing of ZIKV infec-
tion in human fibroblasts leading to type I and type II IFN 
responses. Olagnier et al. [72] have suggested that the vi-
ral infection of fetal neural progenitor cells could activate 
TLR3 immune responses, leading to a deregulation of 
genes that control apoptosis, resulting in severe damage 
to the embryonic brain. All of these inflammatory issues 
are relevant when it comes to a viral infection since the 
immune system may respond differently. Moreover, in 
the case of ZIKV, previous infections with other flavivi-
ruses, such as dengue virus and yellow fever, may trigger 
a secondary immune response of differential magnitude 

given the great molecular similarity of some immunogen-
ic epitopes among these correlated viruses.

The understanding of normal neurodevelopment and 
its comparison with neuropathogenesis during ZIKV in-
fection are extremely relevant issues, not only for the 
identification of virus target cells but also for the identifi-
cation of which structural, cognitive, motor, and behav-
ioral damages are expected. It is known that ZIKV infec-
tion can occur at any time during pregnancy, and there-
fore at any point in development, causing harm to the 
baby to a greater or lesser extent. It is important to evalu-
ate the long-term effects of ZIKV infection and its corre-
lation with neurodevelopmental disorders, such as ASD.
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